
Backoff and Interpolation

• Sometimes it helps to use less context
• Condition on less context for contexts you haven’t learned much about 

• Backoff: 
• use trigram if you have good evidence,

• otherwise bigram, otherwise unigram

• Interpolation: 
• mix unigram, bigram, trigram

• Interpolation works better



Linear Interpolation

•Simple interpolation

• Lambdas conditional on context:



How to set the lambdas?

• Use a held-out corpus

• Choose λs to maximize the probability of held-out data:

• Fix the N-gram probabilities (on the training data)
• Then search for λs that give largest probability to held-out set:

Training Data
Held-Out 

Data
Test 
Data

logP(w1...wn |M(l1...lk )) = logPM (l1...lk )(wi |wi-1)
i

å



Smoothing for Web-scale N-grams

• “Stupid backoff” (Brants et al. 2007)

•No discounting, just use relative frequencies 
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Unknown words: Open versus closed 
vocabulary tasks

• If we know all the words in advanced
• Vocabulary V is fixed
• Closed vocabulary task

• Often we don’t know this
• Out Of Vocabulary = OOV words
• Open vocabulary task

• Instead: create an unknown word token <UNK>
• Training of <UNK> probabilities

• Create a fixed lexicon L of size V
• At text normalization phase, any training word not in L changed to  <UNK>
• Now we train its probabilities like a normal word

• At decoding time
• If text input: Use UNK probabilities for any word not in training
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Advanced Smoothing Algorithms
• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently 

used for N-grams.

• However, they can be used in domains where the number of zeros isn’t so huge. 
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Advanced Smoothing Algorithms
• Naïve smoothing algorithms have limited usage and are not very effective. Not frequently 

used for N-grams.

• However, they can be used in domains where the number of zeros isn’t so huge. 

• Popular Algorithms:
• Good-Turing
• Kneser-Ney

Use the count of things we’ve seen once
to help estimate the count of things we’ve never seen
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Notation
• NC = Frequency of frequency of c
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Notation
• NC = Frequency of frequency of c
• Rohan I am I am Rohan I like to play
I 3
Rohan 2
Am 2
like 1
to 1
play 1

Adapted from NLP Lectures by Daniel Jurafsky

N1 = 3, N2 = 2, N3 = 1
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Good Turing Smoothing Intuition
• You are birdwatching in the Jim Corbett National Park and you have observed the following 

birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 
birds 

• How likely is it that the next bird you see is a woodpecker? 

Adapted from NLP Lectures by Daniel Jurafsky
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birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 
birds 

• How likely is it that the next bird you see is a woodpecker? 
• 1/18

• How likely is it that the next bird you see is a new species -- Purple Heron or Painted Stork? 
• We will use our estimate of things we saw once to estimate the new things.
• 3/18 (because N1 = 3)
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• You are birdwatching in the Jim Corbett National Park and you have observed the following 

birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 
birds 

• How likely is it that the next bird you see is a woodpecker? 
• 1/18

• How likely is it that the next bird you see is a new species -- Purple Heron or Painted Stork? 
• We will use our estimate of things we saw once to estimate the new things.
• 3/18 (because N1 = 3)

• Assuming so, how likely it is that the new species is Woodpecker?
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Good Turing Smoothing Intuition
• You are birdwatching in the Jim Corbett National Park and you have observed the following 

birds: 10 Flamingos, 3 Kingfishers, 2 Indian Rollers, 1 Woodpecker, 1 Peacock, 1 Crane = 18 
birds 

• How likely is it that the next bird you see is a woodpecker? 
• 1/18

• How likely is it that the next bird you see is a new species -- Purple Heron or Painted Stork? 
• We will use our estimate of things we saw once to estimate the new things.
• 3/18 (because N1 = 3)

• Assuming so, how likely it is that the new species is Woodpecker?
• Must be less than 1/18

Adapted from NLP Lectures by Daniel Jurafsky
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Good Turing Calculations

• P*
GT(things with zero frequency) = 𝑁1

𝑁
    

Adapted from NLP Lectures by Daniel Jurafsky
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Good Turing Calculations

• P*
GT(things with zero frequency) = 𝑁1

𝑁
    

• Unseen (Purple Heron or Painted Stork)
• C = 0
• MLE p = 0/18 = 0

• P*
GT (unseen) = N1/N = 3/18

Adapted from NLP Lectures by Daniel Jurafsky
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Good Turing Calculations

• P*
GT(things with zero frequency) = 𝑁1

𝑁
    

• Unseen (Purple Heron or Painted Stork)
• C = 0
• MLE p = 0/18 = 0

• P*
GT (unseen) = N1/N = 3/18

Adapted from NLP Lectures by Daniel Jurafsky

c* =
(c+1)Nc+1

Nc
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Good Turing Calculations

• P*
GT(things with zero frequency) = 𝑁1

𝑁
    

• Unseen (Purple Heron or Painted Stork)
• C = 0
• MLE p = 0/18 = 0

• P*
GT (unseen) = N1/N = 3/18

  
• Seen once

• C = 1
• MLE p = 1/18

• c∗ (Woodpecker) = 2 * N2/N1

                = 2 * 1/3  = 2/3

• P*
GT (Woodpecker) = 

2

3

18
 = 1/27

Adapted from NLP Lectures by Daniel Jurafsky

c* =
(c+1)Nc+1

Nc
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Good Turing Estimation
Count c Good Turing c*

0 .0000270

1 0.446

2 1.26

3 2.24

4 3.24

5 4.22

6 5.19

7 6.21

8 7.24

9 8.25

• Numbers from Church and Gale (1991)

• 22 million words of AP Newswire

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin
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Good Turing Estimation

• Numbers from Church and Gale (1991)

• 22 million words of AP Newswire

It looks like c* = (c - 0.75)

Example from Speech and Language Processing book by Daniel Jurafsky and James H. Martin

Count c Good Turing c*

0 .0000270

1 0.446

2 1.26

3 2.24

4 3.24

5 4.22

6 5.19

7 6.21

8 7.24

9 8.25
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Absolute Discounting Interpolation
• Adjusts the probability estimates for n-grams by discounting each count by a fixed 

amount (usually a small constant) before computing probabilities

PAbsoluteDiscounting(wi |wi−1) = c(wi−1,wi) − d
c (wi−1)  + λ(wi−1)P(wi)
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Absolute Discounting Interpolation
• Adjusts the probability estimates for n-grams by discounting each count by a fixed 

amount (usually a small constant) before computing probabilities

PAbsoluteDiscounting(wi |wi−1) = c(wi−1,wi) − d
c (wi−1)  + λ(wi−1)P(wi)

• But considering the regular unigram probability has some limitations, as we will see in the 
upcoming slides.

unigram

Interpolation weight
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Continuation Probability
• Intuition: Shannon game 

• My breakfast is incomplete without a cup of ... : coffee/ Angeles? 
• Say, in the corpus “Angeles” more prevalent than “coffee”
• However, it is important to note that “Angeles” mostly comes after “Los”

• Instead of regular unigram probability, use continuation probability.
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• Instead of regular unigram probability, use continuation probability.
• Regular Unigram probability: P(w) : “How likely is w?”
• Pcontinuation(w): “How likely is w to appear as a novel continuation?”

• How to compute continuation probability?

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

Continuation Probability
• Intuition: Shannon game 

• My breakfast is incomplete without a cup of ... : coffee/ Angeles? 
• Say, in the corpus “Angeles” more prevalent than “coffee”
• However, it is important to note that “Angeles” mostly comes after “Los”

• Instead of regular unigram probability, use continuation probability.
• Regular Unigram probability: P(w) : “How likely is w?”
• Pcontinuation(w): “How likely is w to appear as a novel continuation?”

• How to compute continuation probability?
• Count how many different bigram types each word completes =>   Normalize by the total number of                     

word bigram types

Pcontinuation(w) = | {w i−1 : 
c(w i−1,w) > 0} | 

| {(w j−1,wj) : c(w j−1,wj) > 0} |
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Continuation Probability
• Intuition: Shannon game 

• My breakfast is incomplete without a cup of ... : coffee/ Angeles? 
• Say, in the corpus “Angeles” more prevalent than “coffee”
• However, it is important to note that “Angeles” mostly comes after “Los”

• Instead of regular unigram probability, use continuation probability.
• Regular Unigram probability: P(w) : “How likely is w?”
• Pcontinuation(w): “How likely is w to appear as a novel continuation?”

• How to compute continuation probability?
• Count how many different bigram types each word completes =>   Normalize by the total number of                       

word bigram types

Pcontinuation(w) = | {w i−1 : 
c(w i−1,w) > 0} | 

| {(w j−1,wj) : c(w j−1,wj) > 0} |

A common word (Angeles) 
appearing in only one context 

(Los) is likely to have a low 
continuation probability.
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Kneser-Ney Smoothing

where, λ is a normalizing constant (How to define this?)

PKN(wi |wi−1) = max(c(wi−1,wi) − d,0)
c (wi−1)  + λ(wi−1)Pcontinuation(wi)
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Kneser-Ney Smoothing

where, λ is a normalizing constant

λ(wi−1) = d
c(w i−1 

) | {w : c(wi−1,w) > 0} |

PKN(wi |wi−1) = max(c(wi−1,wi) − d,0)
c (wi−1)  + λ(wi−1)Pcontinuation(wi)
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Evaluation of Language Models
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Evaluation of a Language Model
• Does our language model prefer good sentences over bad ones? 

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

Evaluation of a Language Model
• Does our language model prefer good sentences over bad ones? 

• Assign higher probability to “real” or “frequently observed” sentences than “ungrammatical” or “rarely 
observed” sentences

• Terminologies:
• We optimize the parameters of our model based on data from a training set.
• We assess the model's performance on unseen test data that is disjoint from the training data.
• An evaluation metric provides a measure of the performance of our model on the test set.
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Extrinsic Evaluation
• Measure the effectiveness of a language model by testing their performance on 

different downstream NLP tasks, such as machine translation, text classification, 
speech recognition.
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Extrinsic Evaluation
• Measure the effectiveness of a language model by testing their performance on 

different downstream NLP tasks, such as machine translation, text classification, 
speech recognition.

 

• Let us consider two different language models: A and B
• Select a suitable evaluation metric to assess the performance of the language models based on the 

chosen task.
• Obtain the evaluation scores for A and B 
• Compare the evaluation scores for A and B
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Intrinsic Evaluation: Perplexity
Intuition: The Shannon Game 

• How well can we predict the next word? 
• I always order pizza with cheese and ... 
• The president of India is ... 
• I wrote a ...
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Intrinsic Evaluation: Perplexity
Intuition: The Shannon Game 

• How well can we predict the next word? 
• I always order pizza with cheese and ... 
• The president of India is ... 
• I wrote a ...

• Observation: The more context we consider, the better the prediction.
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Intrinsic Evaluation: Perplexity
Intuition: The Shannon Game 

• How well can we predict the next word? 
• I always order pizza with cheese and ... 
• The president of India is ... 
• I wrote a ...

• Observation: The more context we consider, the better the prediction.

A better text model is characterized by its ability to assign a higher 
probability to the correct word in a given context.
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Perplexity
The best language model is one that best predicts an unseen test set.

Perplexity is the inverse probability of the test data, normalized by the number of words. 

• Given a sentence W consisting of n words, the perplexity is calculated as follows:

PP(W) = P(w1w2 ...wn)−
1

𝑛
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Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛
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Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛

      Applying Chain Rule: 

PP(W) = ς
1

P(w i |w1w2 ...w i−1 
)

1

𝑛
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Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛

      Applying Chain Rule: 

PP(W) = ς
1

P(w i |w1w2 ...w i−1 
)

1

𝑛

      Applying Markov Assumption (n = 2), i.e. for bigram LM: 

PP(W) = ς
1

P(w i |w i−1 
)

1

𝑛
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Perplexity
Thus, for the sentence W, perplexity is:

PP(W) = P(w1w2 ...wn)−
1

𝑛

      Applying Chain Rule: 

PP(W) = ς
1

P(w i |w1w2 ...w i−1 
)

1

𝑛

      Applying Markov Assumption (n = 2), i.e. for bigram LM: 

PP(W) = ς
1

P(w i |w i−1 
)

1

𝑛

Minimizing perplexity is the same as 
maximizing probability.
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Perplexity and Entropy

https://www.lcs2.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/
https://home.iitd.ac.in/
https://lcs2-iitd.github.io/ELL881-AIL821-2401/


Tanmoy Chakraborty

LLMs: Introduction and Recent AdvancesLLMs: Introduction and Recent Advances

Tanmoy Chakraborty
LLMs: Introduction and Recent Advances

LLMs: Introduction and Recent Advances

Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.
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Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.

• Smoothing techniques address data sparsity.
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Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.

• Smoothing techniques address data sparsity.
• But even with smoothing, rare n-grams are hard to predict.
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Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.

• Smoothing techniques address data sparsity.
• But even with smoothing, rare n-grams are hard to predict.

• Large vocabulary leads to high memory requirements.
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Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.

• Smoothing techniques address data sparsity.
• But even with smoothing, rare n-grams are hard to predict.

• Large vocabulary leads to high memory requirements.

• High computational cost for large n-grams.
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Problems of Statistical Language Models
• N-gram LMs suffer from data sparsity and limited context.

• Predicting the next word using a fixed window of previous words.
• Fixed Context Size: Limited to a fixed window of previous words.

• Smoothing techniques address data sparsity.
• But even with smoothing, rare n-grams are hard to predict.

• Large vocabulary leads to high memory requirements.

• High computational cost for large n-grams.

• Lack of generalization to unseen word combinations.
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The Need for Richer Representations
Requirements:

• Contextual Understanding: Need for models that understand context beyond fixed 
windows.

• Semantic Similarity: Ability to capture relationships between words (e.g., synonyms).

• Scalability: Models that can scale to large datasets and handle vast vocabularies 
efficiently.
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Moving to Word Embeddings & Neural LM
In the successive lectures, we will see how representing words (actually, tokens) as vectors 
and transition to neural LMs solve many of those problems. 
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Moving to Word Embeddings & Neural LM
In the successive lectures, we will see how representing words (actually, tokens) as vectors 
and transition to neural LMs solve many of those problems. 

• Move from discrete to continuous representations.

• Capture richer semantic information.

• Enable generalization to unseen data.

• Scale to large datasets.
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Timeline in Language Modelling

1954 1986

Distributional Hypothesis : 
A word is characterized by 

the company it keeps

Recurrent Neural Networks : 
Processes sequential data by 

using the output from previous 
steps as inputs for the current 

step

2013

Word2Vec : 
Distributed word 

representation in NLP 
models

2014
Attention : At each 

time step, the model 
selectively focuses 

on relevant words in 
the sequence 

2017

Transformers : Uses 
attention and 

positional encoding to 
learn context-aware 

representations

1948

N-gram Model : 
Predict the next 

word based on the 
previous N-1 words
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